- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bae, Tae-Sung (2)
-
Chung, Hee-Suk (2)
-
Dev, Durjoy (2)
-
Islam, Molla Manjurul (2)
-
Jung, Yeonwoong (2)
-
Krishnaprasad, Adithi (2)
-
Martinez-Martinez, Ricardo (2)
-
Roy, Tania (2)
-
Han, Sang Sub (1)
-
Okonkwo, Victor (1)
-
Shawkat, Mashiyat Sumaiya (1)
-
Touma, Jimmy (1)
-
Wu, Benjamin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Memristors for neuromorphic computing have gained prominence over the years for implementing synapses and neurons due to their nano-scale footprint and reduced complexity. Several demonstrations show two-dimensional (2D) materials as a promising platform for the realization of transparent, flexible, ultra-thin memristive synapses. However, unsupervised learning in a spiking neural network (SNN) facilitated by linearity and symmetry in synaptic weight update has not been explored thoroughly using the 2D materials platform. Here, we demonstrate that graphene/MoS2/SiOx/Ni synapses exhibit ideal linearity and symmetry when subjected to identical input pulses, which is essential for their role in online training of neural networks. The linearity in weight update holds for a range of pulse width, amplitude and number of applied pulses. Our work illustrates that the mechanism of switching in MoS2-based synapses is through conductive filaments governed by Poole-Frenkel emission. We demonstrate that the graphene/MoS2/SiOx/Ni synapses, when integrated with a MoS2-based leaky integrate-and-fire neuron, can control the spiking of the neuron efficiently. This work establishes 2D MoS2as a viable platform for all-memristive SNNs.more » « less
-
Islam, Molla Manjurul; Krishnaprasad, Adithi; Dev, Durjoy; Martinez-Martinez, Ricardo; Okonkwo, Victor; Wu, Benjamin; Han, Sang Sub; Bae, Tae-Sung; Chung, Hee-Suk; Touma, Jimmy; et al (, ACS Nano)
An official website of the United States government
